skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Klein, Eric S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. ABSTRACT The Yukon‐Kuskokwim Delta (YKD), covering ~75,000 km2of Alaska's discontinuous permafrost zone, has a historic (1902–2023) mean annual air temperature of ~−1°C and was previously thought to lack ice wedge networks. However, our recent investigations near Bethel, Alaska, revealed numerous near‐surface ice wedges. Using 20 cm resolution aerial orthoimagery from 2018, we identified ~50 linear km of ice wedge troughs in a 60 km2study area. Fieldwork in 2023 and 2024 confirmed ice wedges up to ~1.5 m wide and ~2.5 m in vertical extent, situated on average 0.9 m below the tundra surface (n = 29). Ground‐penetrating radar (GPR) detected additional ice wedges beyond those visible in the remote sensing imagery, suggesting an underestimation of their true abundance. Coring of polygonal centers revealed late‐Quaternary deposits, including thick early Holocene peat, late‐Pleistocene ice‐rich silts (reworked Yedoma), charcoal layers from tundra fires, and the Aniakchak CFE II tephra (~3600 cal yrs BP). Stable water isotopes from Bethel's wedge ice (mean δ18O = −15.7 ‰, δ2H = −113.1 ‰) indicate a relatively enriched signature compared to other Holocene ice wedges in Alaska, likely due to warmer temperatures and maritime influences. Expanding our mapping across the YKD using high‐resolution satellite imagery from 2012 to 2024, we estimate that the Holocene ice wedge zone encompasses ~30% of the YKD tundra region. Our findings demonstrate that ice wedge networks are more widespread across the YKD than previously recognized, emphasizing both the resilience and vulnerability of the region's warm, ice‐rich permafrost. These insights are crucial for understanding permafrost responses to climate change and assessing agricultural potential and development in the region. 
    more » « less
  3. Radiocarbon-dated peat cores collected from an ombrotrophic bog in southern Estonia record shifting environmental conditions and carbon accumulation rates in northern Europe during the late Holocene. Modern observations indicate that the water balance of the peatland is highly influenced by changes in relative humidity, followed by temperature and precipitation. The modern δ18O and δ2H values of surface water suggest that the groundwater is an integration of several months of precipitation. There also appears to be little or no direct influence of surface evaporation on the water within the bog, suggesting that water loss is preferentially through transpiration and sub-surface flow. Bulk peat δ13C values exhibit a trend of higher values through the late Holocene, suggesting a pattern of overall increased surface wetness. The δ15N values were low from ~4130 to 3645 cal yr BP, suggesting drier conditions, followed by intermediate values until ~2995 cal yr BP. The δ15N values decrease again from ~2995 to 2470 cal yr BP, suggesting a return to drier conditions, followed by intermediate values until ~955 cal yr BP. The δ15N values were high, suggesting wetter conditions from ~955 to 250 cal yr BP, followed by intermediate values through the modern. Carbon accumulation rates were low to intermediate from ~4200 to 2470 cal yr BP, followed by intermediate-to-high values until ~1645 cal yr BP. Carbon accumulation rates were then low until ~585 cal yr BP, followed by intermediate values through the modern. The geochemical data, combined with observed changes in peat composition and regional proxies of temperature and water table fluctuations through the late Holocene, suggest that carbon accumulation rates were relatively low under dry and warm conditions, whereas accumulation was generally higher (up to ~80 g C m−2 yr−1) when the climate was wetter and/or colder. These findings further suggest that future environmental changes affecting the regional water balance and temperature will impact the potential for northern peatlands to capture and store carbon. 
    more » « less
  4. Arctic sea-ice loss is emblematic of an amplified Arctic water cycle and has critical feedback implications for global climate. Stable isotopes (δ 18 O, δ 2 H, d-excess ) are valuable tracers for constraining water cycle and climate processes through space and time. Yet, the paucity of well-resolved Arctic isotope data preclude an empirically derived understanding of the hydrologic changes occurring today, in the deep (geologic) past, and in the future. To address this knowledge gap, the Pan-Arctic Precipitation Isotope Network (PAPIN) was established in 2018 to coordinate precipitation sampling at 19 stations across key tundra, subarctic, maritime, and continental climate zones. Here, we present a first assessment of rainfall samples collected in summer 2018 ( n = 281) and combine new isotope and meteorological data with sea ice observations, reanalysis data, and model simulations. Data collectively establish a summer Arctic Meteoric Water Line where δ 2 H = 7.6⋅δ 18 O–1.8 ( r 2 = 0.96, p < 0.01). Mean amount-weighted δ 18 O, δ 2 H, and d-excess values were −12.3, −93.5, and 4.9‰, respectively, with the lowest summer mean δ 18 O value observed in northwest Greenland (−19.9‰) and the highest in Iceland (−7.3‰). Southern Alaska recorded the lowest mean d-excess (−8.2%) and northern Russia the highest (9.9‰). We identify a range of δ 18 O-temperature coefficients from 0.31‰/°C (Alaska) to 0.93‰/°C (Russia). The steepest regression slopes (>0.75‰/°C) were observed at continental sites, while statistically significant temperature relations were generally absent at coastal stations. Model outputs indicate that 68% of the summer precipitating air masses were transported into the Arctic from mid-latitudes and were characterized by relatively high δ 18 O values. Yet 32% of precipitation events, characterized by lower δ 18 O and high d-excess values, derived from northerly air masses transported from the Arctic Ocean and/or its marginal seas, highlighting key emergent oceanic moisture sources as sea ice cover declines. Resolving these processes across broader spatial-temporal scales is an ongoing research priority, and will be key to quantifying the past, present, and future feedbacks of an amplified Arctic water cycle on the global climate system. 
    more » « less